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Abstract

We calculate the twisted Hochschild and cyclic homology of all Podleś quantum spheres relative to diagonal automorphisms.
The dimension drop in Hochschild homology is overcome via twisting by the modular automorphism of the canonical SUq (2)-
invariant linear functional. Specializing to the standard quantum sphere, we identify the cohomology class of the 2-cocycle
discovered by Schmüdgen and Wagner corresponding to the distinguished covariant differential calculus found by Podleś.
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1. Introduction

Twisted cyclic cohomology was discovered by Kustermans, Murphy and Tuset [8], arising naturally from covariant
differential calculi over compact quantum groups. They defined a cohomology theory relative to a pair of an algebra
A and an automorphism σ , which on taking σ = id reduces to ordinary cyclic cohomology of A. While it was
immediately recognised that twisted cyclic cohomology (and its dual, twisted cyclic homology, the subject of this
paper) fits into Connes’ general framework of cyclic objects, its relation with differential calculi [16,17] and recent
connection with the “dimension drop” phenomenon in Hochschild homology [4–6,19] makes it of independent
interest.

Previously [5] we studied the twisted Hochschild and cyclic homology of the quantum SL(2) group. We now extend
this work to the Podleś quantum spheres [13,14], which are “quantum homogeneous spaces” for quantum SL(2). The
Podleś spheres have been extensively studied, with much work done constructing Dirac operators, spectral triples
and the corresponding local index formulae. We mention only [1–3,12] amongst many others. In general, covariant
differential calculi over quantum groups do not fit into Connes’ formalism of spectral triples [15]. However, in [17]
Schmüdgen and Wagner constructed a Dirac operator giving a commutator representation of the distinguished 2-
dimensional first order covariant calculus over the Podleś sphere [14]. The associated twisted cyclic 2-cocycle τ

was shown to be a nontrivial element of twisted cyclic cohomology. This 2-cocycle does not correspond to the “no
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dimension drop” case — the fact that twisting overcomes the dimension drop in Hochschild homology for the Podleś
spheres is the main new result of this paper.

A summary of this paper is as follows. In Section 2 we recall the definitions [5,8] of twisted Hochschild and cyclic
homology H Hσ

∗ (A), HCσ
∗ (A). These “twisted homologies” arise from a cyclic object in the sense of Connes [9],

hence all Connes’ homological machinery can be applied. Previously we proved that:

Theorem 1.1 ([5]). For arbitraryA and σ , if σ acts diagonally relative to a set of generators of A then H Hσ
n (A) ∼=

Hn(A, σA) for each n.

Here σA is the “σ -twisted” A-bimodule with A as underlying vector space, and A-bimodule structure

a1 B x C a2 = σ(a1)xa2 x, a1, a2 ∈ A. (1)

Since Hn(A, σA) ∼= TorA
e

n (σA,A) [9] (Ae
= A⊗Aop), if we have a projective resolution of A by left Ae-modules,

we can in principle compute H∗(A, σA).
Hochschild and cyclic homology of the Podleś quantum spheres was calculated by Masuda et al. [10], using a free

resolution that we rely on in this paper. In Section 3 we recall their definitions. In Section 4 we use this resolution
to calculate the Hochschild homologies Hn(A, σA), which by Theorem 1.1 are isomorphic to the twisted Hochschild
homologies H Hσ

n (A).
We obtain the following striking result (Theorem 4.6). In the untwisted situation [10] the Hochschild groups

H Hn(A) = Hn(A,A) vanish for n ≥ 2, in contrast to the classical situation q = 1 (the ordinary 2-sphere) whose
Hochschild dimension is 2. This “dimension drop” phenomenon has been seen in many other quantum situations
(see [4] for a detailed discussion). However, in the twisted situation, there exist automorphisms σ with H Hσ

n (A) 6= 0
for n = 0, 1, 2. These automorphisms are precisely the positive powers of the canonical modular automorphism
associated to the SUq(2)-invariant linear functional discovered by Noumi and Mimachi [11]. For the standard quantum
sphere, which naturally embeds as a subalgebra of quantum SU (2), this modular automorphism coincides with the
modular automorphism induced from the Haar state on quantum SU (2). The central role of the modular automorphism
in avoiding the dimension drop in Hochschild homology was also seen for quantum SL(N ) [5,6]. Similar results have
been obtained by Sitarz [19] for quantum hyperplanes.

In Section 5 we calculate twisted cyclic homology as the total homology of Connes’ mixed (b, B)-bicomplex
arising from the underlying cyclic object. Finally, in Section 6 we apply our results to the standard quantum sphere,
showing that the class [τ ] in twisted cyclic cohomology HC2

σ (A) of Schmüdgen and Wagner’s twisted cyclic
2-cocycle is proportional to [Sh A], where S is the periodicity operator and h A an explicit nontrivial twisted cyclic
0-cocycle.

2. Twisted Hochschild and cyclic homology

We recall the definitions of twisted Hochschild and cyclic homology [5]. Let A be a unital algebra over a field
k (assumed to be of characteristic zero), and σ an automorphism. Define Cn(A) = A⊗(n+1). For brevity, we will
write a0 ⊗ · · · ⊗ an ∈ A⊗(n+1) as (a0, . . . , an). Define the twisted cyclic operator λσ : Cn(A) → Cn(A) by
λσ (a0, . . . , an) = (−1)n(σ (an), a0, . . . , an−1). Hence λn+1

σ (a0, . . . , an) = (σ (a0), . . . , σ (an)). Now consider the
quotient

Cσ
n (A) = A⊗(n+1)/(id− λn+1

σ ). (2)

If σ = id, then Cσ
n (A) = A⊗(n+1). The twisted Hochschild boundary operator bσ : Cn+1(A)→ Cn(A) is given by

bσ (a0, . . . , an+1) =

n∑
j=0

(−1) j (a0, . . . , a j a j+1, . . . , an+1)+ (−1)n+1(σ (an+1)a0, a1, . . . , an). (3)

We have b2
σ = 0 and bσ λn+2

σ = λn+1
σ bσ , hence bσ descends to the quotient, bσ : Cσ

n+1(A) → Cσ
n (A). Twisted

Hochschild homology H Hσ
∗ (A) is defined as the homology of the complex {Cσ

n (A), bσ }n≥0. Taking σ = id gives
H H∗(A) = H∗(A,A), the Hochschild homology of A with coefficients in A.
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Now define Cσ,λ
n (A) = A⊗(n+1)/(id− λσ ). We have a surjection Cσ

n (A)→ Cσ,λ
n (A). As maps A⊗(n+1)

→ A⊗n ,
we have bσ (id− λσ ) = (id− λσ )b′, where

b′(a0, . . . , an) =

n∑
j=0

(−1) j (a0, . . . , a j a j+1, . . . , an). (4)

Hence bσ descends to a map bσ : Cσ,λ
n+1(A) → Cσ,λ

n (A). Twisted cyclic homology HCσ
∗ (A) is then defined as the

homology of the complex {Cσ,λ
n (A), bσ }n≥0. Taking σ = id gives back ordinary cyclic homology HC∗(A).

Equivalently, twisted cyclic homology is the total homology of Connes’ mixed (b, B)-bicomplex coming from
the underlying cyclic object, which we define in Section 5, and use to calculate HCσ

∗ (A) from H Hσ
∗ (A) for the

Podleś spheres.

3. The Podleś quantum spheres

3.1. The coordinate algebras A(c, d)

Let k be a field of characteristic zero, and q ∈ k nonzero and not a root of unity. For c, d ∈ k, with c + d 6= 0,
we define the coordinate algebra A(c, d) of the Podleś quantum 2-sphere S2

q (c, d) to be the unital k-algebra with
generators A, B, B∗ satisfying

B A = q2 AB, AB∗ = q2 B∗A (5)

B∗B = cd + (c − d)A − A2, B B∗ = cd + q2(c − d)A − q4 A2.

In the notation of [10], we take A = ζ , B = Y , B∗ = −q X . As algebras, A(rc, rd) ∼= A(c, d) for any r ∈ k, r 6= 0.
A Poincaré–Birkhoff–Witt basis for A(c, d) consists of the monomials

{B j Ak
} j,k≥0, {B∗ j+1 Ak

} j,k≥0. (6)

Working over C (we take q, c, d ∈ R, with 0 < q < 1, 0 < c), for d > 0, there is a family of quantum spheres
parameterised by t ∈ R, t > 0, with

B∗B = t1+ A − A2, B B∗ = t1+ q2 A − q4 A2

and also the “equatorial quantum sphere”, with B∗B = 1 − A2, B B∗ = 1 − q4 A2. The C*-algebraic completions
(with A∗ = A) were shown by Sheu [18] to all be isomorphic. However, Krähmer proved the underlying algebras are
pairwise non-isomorphic [7]. Taking t = 0 gives the “standard quantum 2-sphere”

B∗B = A − A2, B B∗ = q2 A − q4 A2. (7)

Now recall that the coordinate Hopf *-algebra A(SUq(2)) is the unital *-algebra over C (algebraically) generated by
elements a, c satisfying the relations

a∗a + c∗c = 1, aa∗ + q2c∗c = 1, c∗c = cc∗, ac = qca, ac∗ = qc∗a.

There is a dual pairing 〈., .〉 of A(SUq(2)) with Uq(su(2)), with standard generators E , F , K±1 [17], giving left and
right actions of Uq(su(2)) on A(SUq(2)):

f B x =
∑
〈 f, x(2)〉 x(1), x C f =

∑
〈 f, x(1)〉 x(2). (8)

The coordinate *-algebra A(S2
q ) of the standard Podleś quantum sphere is the *-subalgebra of A(SUq(2)) invariant

under the action of the grouplike element K ∈ Uq(su(2)). Explicitly,

a C K = q−1/2a, a∗ C K = q1/2a∗, c C K = q1/2c, c∗ C K = q−1/2c∗.

Writing A = c∗c, B = ac, B∗ = c∗a∗ gives the relations (5) and (7).
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Masuda et al. [10] gave a resolution of A = A(c, d),

. . .→Mn+1 →Mn → . . .→M2 →M1 →M0 → A→ 0 (9)

by free left Ae-modules Mn (Ae
= A ⊗ Aop), with rank(M0) = 1, rank(M1) = 3, rank(Mn) = 4 for n ≥ 2.

Adapting their notation, M1 has a basis {eA, eB, eB∗}, with d1 :M1 →M0 = Ae given by

d1(et ) = t ⊗ 1− 1⊗ to, t = A, B, B∗. (10)

M2 has basis {eA ∧ eB, eA ∧ eB∗ , ϑ
(1)
S , ϑ

(1)
T }, with d2 :M2 →M1 given by

d2(1Ae ⊗ (eA ∧ eB∗)) = (A ⊗ 1− 1⊗ q2 Ao)⊗ eB∗ − (q2 B∗ ⊗ 1− 1⊗ B∗o)⊗ eA

d2(1Ae ⊗ (eA ∧ eB)) = (q2 A ⊗ 1− 1⊗ Ao)⊗ eB − (B ⊗ 1− 1⊗ q2 Bo)⊗ eA

d2(1Ae ⊗ ϑ
(1)
S ) = −q−1

{B ⊗ 1⊗ eB∗ + 1⊗ B∗o ⊗ eB} − q{q2(A ⊗ 1+ 1⊗ Ao)− (c − d)} ⊗ eA

d2(1Ae ⊗ ϑ
(1)
T ) = −q−1

{1⊗ Bo
⊗ eB∗ + B∗ ⊗ 1⊗ eB} − q−1

{(A ⊗ 1+ 1⊗ Ao)− (c − d)} ⊗ eA. (11)

M3 has basis {eA ∧ ϑ
(1)
S , eA ∧ ϑ

(1)
T , eB∗ ∧ ϑ

(1)
S , eB ∧ ϑ

(1)
T }, with d3 :M3 →M2

d3(1Ae ⊗ (eA ∧ ϑ
(1)
S )) = (A ⊗ 1− 1⊗ Ao)⊗ ϑ

(1)
S + q−3

{B ⊗ 1⊗ (eA ∧ eB∗)+ 1⊗ B∗o ⊗ (eA ∧ eB)}

d3(1Ae ⊗ (eA ∧ ϑ
(1)
T )) = (A ⊗ 1− 1⊗ Ao)⊗ ϑ

(1)
T + q−1

{1⊗ Bo
⊗ (eA ∧ eB∗)+ B∗ ⊗ 1⊗ (eA ∧ eB)}

d3(1Ae ⊗ (eB∗ ∧ ϑ
(1)
S ))

= B∗ ⊗ 1⊗ ϑ
(1)
S − 1⊗ B∗o ⊗ ϑ

(1)
T − q−1

{(A ⊗ 1+ 1⊗ q2 Ao)− (c − d)} ⊗ (eA ∧ eB∗)

d3(1Ae ⊗ (eB ∧ ϑ
(1)
T ))

= B ⊗ 1⊗ ϑ
(1)
T − 1⊗ Bo

⊗ ϑ
(1)
S − q−1

{(q2 A ⊗ 1+ 1⊗ Ao)− (c − d)} ⊗ (eA ∧ eB). (12)

M4 has basis {eA ∧ eB∗ ∧ ϑ
(1)
S , eA ∧ eB ∧ ϑ

(1)
T , ϑ

(2)
S , ϑ

(2)
T }, with d4 :M4 →M3

d4(1Ae ⊗ (eA ∧ eB∗ ∧ ϑ
(1)
S ))

= (A ⊗ 1− 1⊗ q2 Ao)⊗ (eB∗ ∧ ϑ
(1)
S )− q2 B∗ ⊗ 1⊗ (eA ∧ ϑ

(1)
S )+ 1⊗ B∗o ⊗ (eA ∧ ϑ

(1)
T )

d4(1Ae ⊗ (eA ∧ eB ∧ ϑ
(1)
T )

= (q2 A ⊗ 1− 1⊗ Ao)⊗ (eB ∧ ϑ
(1)
T )− B ⊗ 1⊗ (eA ∧ ϑ

(1)
T )+ 1⊗ q2 Bo

⊗ (eA ∧ ϑ
(1)
S )

d4(1Ae ⊗ ϑ
(2)
S ) = −q−1 B ⊗ 1⊗ (eB∗ ∧ ϑ

(1)
S ))− q−1

⊗ B∗o ⊗ (eB ∧ ϑ
(1)
T )

− q[q2(A ⊗ 1+ 1⊗ Ao)− (c − d)] ⊗ (eA ∧ ϑ
(1)
S ))

d4(1Ae ⊗ ϑ
(2)
T ) = −q−1

⊗ Bo
⊗ (eB∗ ∧ ϑ

(1)
S )− q−1 B∗ ⊗ 1⊗ (eB ∧ ϑ

(1)
T )

− q−1((A ⊗ 1+ 1⊗ Ao)− (c − d))⊗ (eA ∧ ϑ
(1)
T ).

We refer the reader to [10] for the Mn and dn for n ≥ 5. In Section 4 we use this resolution to calculate the
Hochschild homology H∗(A, σA) of A = A(c, d) with coefficients in the twisted A-bimodule σA defined in (1).

3.2. Comparison of the M–N–W and bar resolutions

We wish to identify generators of H∗(A, σA), found as elements of the modules Mn , with Hochschild cycles
realised as elements of A⊗n . Recall [9] the bar resolution, with differential b′ given by (4)

. . .→ A⊗(n+2)
→

b′ A⊗(n+1)
→ . . .→ A⊗2

→
b′ A→ 0

which is a projective resolution of A as a left Ae-module. Each A⊗(n+1) is a left Ae-module via (x ⊗
yo)(a0, a1, . . . , an) = (xa0, a1, . . . , an y). The comparison theorem (see, for example [20], Theorem 2.2.6) says
that given a projective resolution . . . → M1→

d1 M0→
d0 B → 0 of a left A-module B, and a map f : B → C,
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then for every resolution . . .→ N1 → N0→
η C → 0 there is a chain map { fi :Mi → Ni }i≥0, unique up to chain

homotopy equivalence, lifting f in the sense that η ◦ f0 = f ◦ d0. In our situation, taking B = C = A and f = id,
maps fi :Mi → A⊗(i+2) giving a commutative diagram

. . . −−−−→ M3
d3

−−−−→ M2
d2

−−−−→ M1
d1

−−−−→ M0
d0

−−−−→ A −−−−→ 0

f3

y f2

y f1

y f0

y ∼=

y
. . . −−−−→ A⊗5 b′

−−−−→ A⊗4 b′
−−−−→ A⊗3 b′

−−−−→ A⊗2 b′
−−−−→ A −−−−→ 0

are given by, in the notation of the previous section:

f0(a1 ⊗ ao
2) = (a1, a2), f1(et ) = (1, t, 1), t = A, B, B∗

f2(eA ∧ eB∗) = (1, A, B∗, 1)− q2(1, B∗, A, 1)

f2(eA ∧ eB) = q2(1, A, B, 1)− (1, B, A, 1)

f2(ϑ
(1)
S ) = −q−1(1, B, B∗, 1)− q3(1, A, A, 1)− q−1cd(1, 1, 1, 1)

f2(ϑ
(1)
T ) = −q−1(1, B∗, B, 1)− q−1(1, A, A, 1)− q−1cd(1, 1, 1, 1). (13)

Higher fi can be found inductively: the above is as much as we will need in the following. Applying σA⊗Ae −

to both resolutions allows us to identify generators of homology found from the M–N–W resolution with explicit
Hochschild cycles.

3.3. Automorphisms of A(c, d)

We consider automorphisms acting diagonally with respect to the generators A, B, B∗. For c 6= d, every such
automorphism is of the form

σλ(B) = λB, σλ(A) = A, σλ(B∗) = λ−1 B∗ (14)

some λ ∈ k, λ 6= 0. If c = d , there is a second family of diagonal automorphisms

τλ(B) = λB, τλ(A) = −A, τλ(B∗) = λ−1 B∗. (15)

We conjecture that every automorphism of A(c, d) is of this form. It follows from Theorem 1.1 that:

Lemma 3.1. H Hσ
n (A) ∼= Hn(A, σA) for all n ≥ 0 and every σ = σλ, τλ.

Working over C, Noumi and Mimachi [11] proved the existence of a unique linear functional h : A(c, d) → C
invariant under the left coaction of quantum SU (2), and satisfying h(1) = 1. On monomials this is given by

h(Bm+1 An) = 0 = h((B∗)m+1 An), h(An) =
f (0)

f (n)

(
cn+1
− (−d)n+1

c + d

)
(16)

where f (n) = q−2
−q2n . h is a twisted cyclic 0-cocycle. Borrowing terminology used for quantum SU (2), the unique

automorphism σmod satisfying h(xy) = h(yσmod(x)) is called the modular automorphism (so h is a σ−1
mod-twisted

0-cocycle). Concretely,

σmod : A 7→ A, B 7→ q−2 B, B∗ 7→ q2 B∗. (17)

Obviously σmod is well-defined over any field, not just C. As previously seen, the standard Podleś quantum sphere
embeds as a subalgebra of quantum SU (2), and the modular automorphism associated to the Haar state on quantum
SU (2) restricts to an automorphism of the standard Podleś sphere coinciding with (17).
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4. Twisted Hochschild homology

We calculate the Hochschild homologies Hn(A, σA) of A = A(c, d) for all automorphisms σ = σλ, τλ using the
Masuda–Nakagami–Watanabe resolution (9). By Lemma 3.1 we can identify these with H Hσ

n (A). The case σ = id
was already treated in [10]. In each case we exhibit explicit generators.

4.1. H Hσ
0 (A)

Let σλ, τλ be the automorphisms of A(c, d) given by (14) and (15).

Proposition 4.1. For arbitrary c and d (with c + d 6= 0) and σ = σλ we have:

1. For λ = 1 (σ = id), H Hσ
0 (A) is countably infinite dimensional.

2. For λ 6= 1, H Hσ
0 (A) ∼= k2.

For c = d, and σ = τλ we have:

1. For λ = 1, H Hσ
0 (A) is countably infinite dimensional.

2. For λ 6= 1, H Hσ
0 (A) ∼= k.

Proof. We have H Hσ
0 (A) = {[a] : a = σ(a), [a1a2] = [σ(a2)a1]}. Hence for σ = σλ with λ 6= 1, we need only

consider P–B–W monomials An . Now,

cd[An
] = [(A2

+ (d − c)A + B∗B)An
] = [An+2

] + (d − c)[An+1
] + q2n

[σ(B)B∗An
],

⇒ [An+2
] + (d − c)[An+1

] − cd[An
] = q2nλ(q4

[An+2
] + (d − c)q2

[An+1
] − cd[An

]),

so f (n + 2)[An+2
] + (d − c) f (n + 1)[An+1

] − cd f (n)[An
] = 0, where f (n) = λ−1

− q2n . Write xn = f (n)[An
].

Then we have

xn+2 + (d − c)xn+1 − cdxn = 0 ∀n ≥ 0. (18)

For λ 6∈ q−2N, we have xn = (c + d)−1(αcn
+ β(−d)n) with α, β given by:

α = d f (0)[1] + f (1)[A], β = c f (0)[1] − f (1)[A].

So for λ 6∈ q−2N, we have H Hσ
0 (A) ∼= k[1] ⊕ k[A]. There are three remaining cases we treat separately:

Case 1: σ = σλ, λ = q−(2b+2) (b ≥ 0). Solving (18) requires some care. However, it is not difficult to show that:

1. c 6= d . H Hσ
0 (A) ∼= k[1] ⊕ k[Ab+1

]. If c 6= d then [A], [Ab+1
] also span.

2. c = d . If λ = q−(4b+2), then H Hσ
0 (A) ∼= k[1] ⊕ k[A2b+1

].

For λ = q−(4b+4), H Hσ
0 (A) ∼= k[A] ⊕ k[A2b+2

].
We give the proof of case 1 (case 2 is similar). For λ = q−(2b+2), f (b+ 1) = 0, hence xb+1 = 0. So (18) holds for

n 6= b, b ± 1. Hence for n ≥ b + 2 we have xn = (c + d)−1(αcn
+ β(−d)n) with

α = c−(b+2)
[xb+3 + dxb+2], β = (−d)−(b+2)

[cxb+2 − xb+3].

Further, we have xb+3+(d−c)xb+2 = 0, xb+2−cdxb = 0, so xb+2 = cdxb, xb+3 = cd(c−d)xb, hence α = c−bdxb,
β = c(−d)−bxb. Also, for b ≥ 1 we have (d − c)xb − cdxb−1 = 0. Finally, for 0 ≤ n ≤ b− 2 (provided b ≥ 2) (18)
holds, and solving this gives xn for each n ≤ b in terms of xb. We have, for each b ≥ 0,

xn = g(n − b − 1)xb, ∀ n ≥ 0

where for t ∈ Z, g(t) = (c + d)−1cd[ct
− (−d)t

]. So for cd = 0, [An
] = 0 for n 6= 0, b + 1, while for cd 6= 0 each

xn , for n 6= b + 1, is a nonzero multiple of xb, and so of x0. Since f (n) 6= 0 for n 6= b + 1, we have [An
] = ρn[1],

some ρn 6= 0, for each n 6= b + 1. So for b ≥ 0, [1], [Ab+1
], equivalently (for b ≥ 1) [A], [Ab+1

], span H Hσ
0 (A).

For nontriviality and linear independence, consider σ -twisted 0-cocycles τ0, τb+1, defined (for cd 6= 0) on monomials
x = Bm An by

τ0(x) =


g(n − b − 1)

f (n)
: x = An, n 6= b + 1

0 : otherwise

 , τb+1(x) =

{
1 : x = Ab+1

0 : otherwise.
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For cd = 0, define τ0(1) = 1, τ0(x) = 0 otherwise. Then for all c 6= d, τ0(1) 6= 0, τ0(Ab+1) = 0. So H Hσ
0 (A) = k2,

with basis [1], [Ab+1
]. We note the similarity of τ0 with Noumi and Mimachi’s SUq(2)-invariant functional h (16),

although the latter corresponds to the case λ = q2.

Case 2: σ = σλ, λ = 1 (σ = id). We have x0 = 0, and:

1. cd = 0, c − d 6= 0 : xn+1 = (c − d)n x1 for all n ≥ 0.
2. cd 6= 0, c − d = 0 : x2n+1 = (cd)n x1, x2n+2 = 0, for all n ≥ 0.
3. cd 6= 0, c − d 6= 0 : Then xn+1 = g(n)x1, for some function g.

Also [Am Bn
] = [σ(Bs)Am Bn−s

] = q2sm
[Am Bn

] for 0 ≤ s ≤ n. So [Am Bn
] = 0 unless m = 0 or n = 0.

Similarly for [Am B∗n]. So for σ = id, exactly as in [10],

H H id
0 (A) = H0(A,A) ∼= k[1] ⊕ k[A] ⊕ (Σ⊕m≥1 k[Bm

])⊕ (Σ⊕m≥1 k[B∗m]). (19)

Case 3: c = d , σ = τλ. Then [An+1
] = [An A] = [σ(A)An

] = −[An+1
]. So [An+1

] = 0 for n ≥ 0. So for λ 6= 1,
H Hσ

0 (A) ∼= k[1], and for λ = 1, H Hσ
0 (A) is given by (19), except that [A] = 0. �

4.2. H Hσ
1 (A)

Proposition 4.2. For σ = τλ, if λ 6= 1 then H Hσ
1 (A) = 0. For λ = 1, H Hσ

1 (A) is countably infinite dimensional,
spanned by [(B j , B)], [(B∗ j , B∗)], j ≥ 0.
For σ = σλ, and arbitrary c and d (with c + d 6= 0) we have

1. For λ = q−2 or λ 6∈ q−2N, H Hσ
1 (A) ∼= k[(1, A)].

2. For λ = 1 (σ = id), H Hσ
1 (A) is countably infinite dimensional, spanned by [(1, A)], [(B j , B)], [(B∗ j , B∗)]

( j ≥ 0).
3. For cd = 0, and λ = q−(2b+4) (b ≥ 0), H Hσ

1 (A) ∼= k[(Ab+1, A)].
4. For c − d = 0, if λ = q−(4b+4), then H Hσ

1 (A) ∼= k[(1, A)] ⊕ k[(A2b+1, A)].
If λ = q−(4b+6), then H Hσ

1 (A) ∼= k[(Ab+2, A)].
5. For cd 6= 0, c − d 6= 0, if λ = q−4 then H Hσ

1 (A) ∼= k[(A, A)].
If λ = q−(2b+6), then H Hσ

1 (A) ∼= k[(1, A)] ⊕ k[(Ab+2, A)]

where for conciseness we denote by [(x, y)] the class in H Hσ
1 (A) of x ⊗ y ∈ A⊗2.

Proof. We have d1 : A⊗Ae M1 → A⊗Ae M0 ∼= A given by

d1(a1 ⊗ eA) = a1.(A ⊗ 1− 1⊗ Ao) = a1 A − σ(A)a1 = a1 A − µAa1,

d1(a2 ⊗ eB∗) = a2.(B∗ ⊗ 1− 1⊗ B∗o) = a2 B∗ − σ(B∗)a2 = a2 B∗ − λ−1 B∗a2,

d1(a3 ⊗ eB) = a3.(B ⊗ 1− 1⊗ Bo) = a3 B − σ(B)a3 = a3 B − λBa3.

(A is a right Ae-module via a.(t1 ⊗ t2o) = σ(t2)at1). So (a1, a2, a3) ∈ ker(d1)⇔

(a1 A − µAa1)+ (a2 B∗ − λ−1 B∗a2)+ (a3 B − λBa3) = 0. (20)

Suppose for fixed a3 we have solutions (a1
′, a2

′, a3), (a1
′′, a2

′′, a3). Then (a1
′
− a1

′′, a2
′
− a2

′′, 0) is a solution with
a3 = 0, and is moreover a solution of

(a1 A − µAa1)+ (a2 B∗ − λ−1 B∗a2) = 0. (21)

So to calculate ker(d1)/im(d2), we first show (Lemma 4.3) that (apart from one exceptional case) for any solution
(a1, a2, a3) there exists an element of im(d2) with the same a3. This reduces the problem to solving (21). Repeating
this procedure, we show (Lemma 4.4) that except for two special cases any solution (a1, a2, 0) is equivalent, modulo
im(d2), to a solution (a1

′, 0, 0), which reduces the problem to solving

a1 A − µAa1 = 0. (22)
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Suppose for any a3 = Bm Ak(m ∈ Z, k ≥ 0) we can either find a solution a1 = a1(m, k), a2 = a2(m, k) or show that
none exists. Let S = {(m, k) ∈ Z×N : (20) has a solution with a3 = Bm Ak

}. Then any solution of (20) is of the form

a3 =
∑
S

αm,k Bm Ak, a2 =
∑
S

αm,ka2(m, k)+ a2
′, a1 =

∑
S

αm,ka1(m, k)+ a1
′
+ a1

′′

for some αm,k ∈ k, where (a1
′, a2

′), a1
′′ are solutions of (21) and (22).

We have d2 : A⊗Ae M2 → A⊗Ae M1 given by

d2[b1 ⊗ eA ∧ eB∗ + b2 ⊗ eA ∧ eB + b3 ⊗ ϑ
(1)
S + b4 ⊗ ϑ

(1)
T ]

= [(λ−1 B∗b1 − q2b1 B∗)+ (q2λBb2 − b2 B)− q(q2(b3 A + µAb3)+ (d − c)b3)

− q−1(b4 A + µAb4 + (d − c)b4)] ⊗ eA (23)

+ [(b1 A − q2µAb1)− q−1(b3 B + λBb4)] ⊗ eB∗ (24)

+ [(q2b2 A − µAb2)− q−1(λ−1 B∗b3 + b4 B∗)] ⊗ eB . (25)

Lemma 4.3. Given (a1, a2, a3) ∈ ker(d1)/im(d2), we can take a3 = 0 unless λ = 1, in which case the space of
(equivalence classes of) solutions with a3 6= 0 is spanned (as a k-vector space) by {a1 = 0 = a2, a3 = B j , j ≥ 0 }.

Proof. To solve (20) with a3 = B∗ j+1 Ak , take b3 = −qλB∗ j Ak , b1 = 0 = b2 = b4 in (25). To solve (20) with
a3 = B j Ak+1, take b2 = B j Ak , all other bi zero in (25). This leaves the case of solving (20) with a3 = B j . Take
b1 = 0,

b2 = B j
[q−2 j (1+ x2)A + (d − c)(1+ x)], b3 = qλ(µ− x2)B j+1, b4 = q(µ− x)B j+1

where x = q2 j+2, giving a3 = (x − µ)cd B j . So for cd 6= 0 we’re done. For cd = 0, it is clear there is no solution to
(20) with a3 = B j unless λ = 1, in which case a2 = a1 = 0 gives a solution. �

So we have reduced solving (20) modulo im(d2) to solving (21). In the same way, it is straightforward to show
that:

Lemma 4.4. Any solution of (20) with a3 = 0 is equivalent, modulo im(d2), either to a solution with a3 = 0 = a2,
or to one of the special cases:

1. λ = 1, µ = ±1, a1 = 0 = a3, a2 = (B∗) j , j ≥ 0.
2. λ = 1, µ = ±1, a3 = 0, a1 = B j

[ f (2 j + 2)q−2 j A + (d − c) f ( j + 1)], a2 = (µ − q2 j )B j+1, j ≥ 0, which is
equivalent to a1 = 0 = a2, a3 = B j . Here f (n) = λ−1

− q2n as before.

Finally we need to solve (22). For µ = −1, the only solution is a1 = 0.

Lemma 4.5. For µ = 1, V = {(a1, 0, 0) ∈ ker(d1)/im(d2)} is spanned by:

1. If λ 6∈ {q−(2b+4)
}b≥0, then (1, 0, 0) spans V .

2. cd = 0, λ = q−(2b+4). Then (Ab+1, 0, 0) spans V .
3. c − d = 0. For λ = q−(4b+4), (A2b+1, 0, 0), (1, 0, 0) span V .

For λ = q−(4b+6), (A2b+2, 0, 0) spans V .
4. cd 6= 0, c − d 6= 0. For λ = q−4, (A, 1, 1) spans V .

For λ = q−(2b+6), (Ab+2, 0, 0), (1, 0, 0) span V .

Proof. For µ = 1, the space of solutions of (22) is spanned by {a1 = A j , j ≥ 0}. These solutions are
not linearly independent. Take b1 = B A j , b2 = 0 = b3 = b4 in (23)–(25), giving a2 = 0 = a3, a1 =

cd f ( j + 1)A j
+ (c − d) f ( j + 2)A j+1

− f ( j + 3)A j+2. Let yn = f (n + 1)[An
⊗ eA] ∈ ker(d1)/im(d2). So

we have

yn+2 + (d − c)yn+1 − cdyn = 0 ∀ n ≥ 0. (26)

This is the same recursion relation as (18). In addition, taking b1 = 0 = b2, b3 = q, b4 = −qλ−1 in (23)–(25), gives
a2 = 0 = a3, a1 = 2 f (2)A + (d − c) f (1), hence 2y1 = (c − d)y0. Solving (26) in the same manner as for (18) in
the proof of Proposition 4.1, together with this additional constraint gives the result. �
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Given a1 ⊗ eA + a2 ⊗ eB∗ + a3 ⊗ eB ∈ ker(d1)/im(d2) we manufacture a twisted Hochschild 1-cycle using
(12). Collecting the results of Lemmas 4.3–4.5 gives the description of ker(d1)/im(d2) appearing in the statement of
Proposition 4.2. This completes the proof of Proposition 4.2.

4.3. H Hσ
n (A), n ≥ 2

Theorem 4.6. For arbitrary c and d (with c + d 6= 0), we find that:

1. For σ = σλ, λ = q−(2b+2), some b ≥ 0, then H Hσ
2 (A) ∼= k. These automorphisms are precisely the positive

powers of the modular automorphism σmod (17) induced from the Haar state on quantum SU (2).
2. For all other σλ, τλ, H Hσ

2 (A) = 0.

The proof proceeds in the same manner as Proposition 4.2, using (11) and (12). We omit the details. For
λ = q−(2b+2), H Hσ

2 (A) ∼= k[ω2], where ω2 is the twisted Hochschild 2-cycle:

ω2 = 2[(Ab+1, B, B∗)− (Ab+1, B∗, B)+ 2(Ab B, B∗, A)− 2q−2(Ab B, A, B∗)]

+ 2(q4
− 1)(Ab+1, A, A)+ (1− q−2)cd(c − d)(Ab, 1, 1)

+ (c − d)[(Ab, B∗, B)− q−2(Ab, B, B∗)+ (1− q2)(Ab, A, A)]. (27)

Finally, all the higher twisted Hochschild homology groups vanish:

Proposition 4.7. We have H Hσ
n (A) = 0 for all n ≥ 3 for any σ = σλ, τλ.

We prove this in the case n = 3:

Theorem 4.8. H Hσ
3 (A) = 0 for all automorphisms σ = σλ, τλ.

Proof. We have

d3[a1 ⊗ (eA ∧ ϑ
(1)
S )+ a2 ⊗ (eA ∧ ϑ

(1)
T )+ a3 ⊗ (eB∗ ∧ ϑ

(1)
S )+ a4 ⊗ (eB ∧ ϑ

(1)
T )]

= [q−3a1 B + q−1λBa2 − q−1(a3 A + q2µAa3 − (c − d)a3)] ⊗ (eA ∧ eB∗) (28)

+ [q−3λ−1 B∗a1 + q−1a2 B∗ − q−1(q2a4 A + µAa4 − (c − d)a4)] ⊗ (eA ∧ eB) (29)

+ [(a1 A − µAa1)+ a3 B∗ − λBa4] ⊗ ϑ
(1)
S (30)

+ [(a2 A − µAa2)− λ−1 B∗a3 + a4 B] ⊗ ϑ
(1)
T (31)

and

d4[b1 ⊗ (eA ∧ eB∗ ∧ ϑ
(1)
S )+ b2 ⊗ (eA ∧ eB ∧ ϑ

(1)
T )+ b3 ⊗ ϑ

(2)
S + b4 ⊗ ϑ

(2)
T ]

= [−q2b1 B∗ + q2λBb2 − q(q2b3 A + µq2 Ab3 − (c − d)b3)] ⊗ (eA ∧ ϑ
(1)
S )

+ [λ−1 B∗b1 − b2 B − q−1(b4 A + µAb4 − (c − d)b4)] ⊗ (eA ∧ ϑ
(1)
T )

+ [(b1 A − q2µAb1)− q−1b3 B − q−1λBb4] ⊗ (eB∗ ∧ ϑ
(1)
S )

+ [(q2b2 A − µAb2)− q−1λ−1 B∗b3 − q−1b4 B∗] ⊗ (eB ∧ ϑ
(1)
T ). (32)

Finding ker(d3) corresponds to finding all solutions (a1, a2, a3, a4) to the four Eqs. (28)–(31). Our strategy is
the same as for Proposition 4.2. Suppose for fixed a4 we find solutions (a1, a2, a3, a4), (a1

′, a2
′, a3

′, a4). Then
(a1 − a1

′, a2 − a2
′, a3 − a3

′, 0) is a solution with a4 = 0. So to calculate ker(d3)/im(d4), we first show (Lemma 4.9)
that for any solution (a1, a2, a3, a4) there exists an element of im(d4) with the same a4. So we need only look for
solutions with a4 = 0.

We repeat this procedure for a3 (Lemma 4.10), showing that ker(d3)/im(d4) is spanned by (equivalence classes of)
solutions with a3 = 0 = a4. Finally we show (Lemmas 4.11 and 4.12 that any such solution belongs to im(d4).

Lemma 4.9. Any solution (a1, a2, a3, a4) of (28)–(31) is equivalent, modulo im(d4), to a solution with a4 = 0.
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Proof. We start by solving for given a4. It is enough just to consider monomials. For a4 = (B∗) j+1 Ak , take
b3 = −qλ(B∗) j Ak , b2 = 0 = b4 in (32). To solve for a4 = B j Ak+1, take b2 = (q2

− µq−2 j )−1 B j Ak , b3 = 0 = b4.
Then q2b2 A−µAb2 = B j Ak+1. So we are left with only the case a4 = B j . Take b2 = (q2

−µq−2 j )−1 B j
[α0+α1 A],

b3 = −q B j+1, b4 = 0. Then −q−1b4 B∗ − q−1λ−1 B∗b3 = B j
[cd + q2(c − d)A + q4 A2

] and q2b2 A − µAb2 =

B j
[α0 A + α1 A2

]. Taking α0 = q2(d − c), α1 = −q4, we see that provided cd 6= 0, we can find solutions with
a4 = B j for any j ≥ 0. If cd = 0, then we see from (30) and (31) that a4 = B j cannot be in ker(d3). �

In the same way, it is straightforward to show that:

Lemma 4.10. Any solution (a1, a2, a3, a4) of (28)–(31) with a4 = 0 is equivalent, modulo im(d4), to a solution with
a3 = a4 = 0.

So we need only consider a1, a2 6= 0. From (30) and (31), we have

a1 A = µAa1, a2 A = µAa2. (33)

Lemma 4.11. For µ = −1, the only solution to (33) is a1 = 0 = a2.

Hence for µ = −1, ker(d3) = im(d4), thus proving Theorem 4.8 in this case.
For µ = 1, (28) and (29) give a1 B + q2λBa2 = 0, B∗a1 + q2λa2 B∗ = 0 (it is straightforward to show that these

two conditions are equivalent). So for µ = 1, ker(d3)/im(d4) is spanned by (the equivalence classes of) the solutions

a1 = −λq2 j+2 A j , a2 = A j , a3 = 0 = a4 ( j ≥ 0). (34)

Lemma 4.12. The solutions (34) all belong to im(d4).

Proof. In the case cd 6= 0, c − d 6= 0, taking

b1 = 4α1 B A j , b2 = 4q2 j (α1λ
−1
− γ )B∗A j , γ = 4(c + d)−2

b3 = λγ q2 j+1 A j
[2q2 A − (c − d)], b4 = −γ q A j

[2A − (c − d)]

some α1 6= λγ , gives (34). The other two cases (cd = 0, c = d) are similar. �

This completes the proof of Theorem 4.8. �

5. Twisted cyclic homology of the Podleś spheres

For an algebra A and automorphism σ , twisted cyclic homology HCσ
∗ (A) arises as in [9] from the cyclic module

Cσ , with objects {Cσ
n }n≥0 (2) defined by Cσ

n = A⊗(n+1)/(id − σ⊗(n+1)). The face, degeneracy and cyclic operators
were given explicitly in [5]. Twisted cyclic homology HCσ

∗ (A) is the total homology of Connes’ mixed (b, B)-
bicomplex corresponding to the cyclic module Cσ :

b4

y b3

y b2

y b1

y
Cσ

3
B2

←−−−− Cσ
2

B1
←−−−− Cσ

1
B0

←−−−− Cσ
0

b3

y b2

y b1

y
Cσ

2
B1

←−−−− Cσ
1

B0
←−−−− Cσ

0

b2

y b1

y
Cσ

1
B0

←−−−− Cσ
0

b1

y
Cσ

0

(35)
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The maps bn coincide with the twisted Hochschild boundary maps bσ (3). We will drop the suffixes and write bn , bσ

as b. In lowest degrees, the maps Bn are:

B0[a0] = [(1, a0)] + [(σ (a0), 1)] = [(1, a0)] + [(a0, 1)],

B1[(a0, a1)] = [(1, a0, a1)] − [(σ (a1), 1, a0)] − [(1, σ (a1), a0)] + [(a0, 1, a1)].

For any a ∈ A, b(a, 1, 1) = (a, 1), so [(a, 1)] = 0 in H Hσ
1 (A). So the induced map B0 : H Hσ

0 (A) → H Hσ
1 (A)

satisfies B0[a] = [(1, a)]. For t ∈ A, with σ(t) = αt , some α ∈ k, then

b

(
m∑

j=0

α j (t j , tm− j , t)− (tm+1, 1, 1)

)
=

(
m∑

j=0

α j

)
(tm, t)− (1, tm+1). (36)

If α = 1, then B0[tm+1
] = [(1, tm+1)] = (m + 1)[(tm, t)] ∈ H Hσ

1 (A).
TakingA = A(c, d), we calculate total homology of the mixed complex (35) via a spectral sequence. The first step

(vertical homology of the columns) gives:y y y y
0

0
←−−−− H Hσ

2 (A)
B1

←−−−− H Hσ
1 (A)

B0
←−−−− H Hσ

0 (A)y y y
H Hσ

2 (A)
B1

←−−−− H Hσ
1 (A)

B0
←−−−− H Hσ

0 (A)y y
H Hσ

1 (A)
B0

←−−−− H Hσ
0 (A)y

H Hσ
0 (A)

(37)

since for every σ we have H Hσ
n (A) = 0 for n ≥ 3. We find that:

Proposition 5.1. For λ 6∈ q−2N, σ = σλ, HCσ
2n(A) = k[1] ⊕ k[A], HCσ

2n+1(A) = 0. For σ = τλ with λ 6= 1,
HCσ

n (A) = 0 for n ≥ 1.

Proof. In both cases H Hσ
0 (A) = k[1] ⊕ k[A] (with [A] = 0 for σ = τλ), H Hσ

n (A) = 0 for n ≥ 1, (37) stabilizes
immediately, and the result follows. �

Proposition 5.2. For λ = 1, µ = ±1, then just as in [10] we have

HCσ
0 (A) = k[1] ⊕ k[A] ⊕

(
⊕∑

m>0

k[Bm
]

)
⊕

(
⊕∑

m>0

k[B∗m]

)
HCσ

2n+1(A) = 0, HCσ
2n+2(A) = k[1] ⊕ k[A], with [A] = 0 for µ = −1.

Proof. We have B0[1] = 0, B0[A] = [(1, A)] = 0, while B0[Bm+1
] = [(1, Bm+1)] = (m+ 1)[(Bm, B)] by (36), and

in the same way B0[B∗m+1
] = (m + 1)[(B∗m, B∗)]. So ker(B0) = k[1] ⊕ k[A], and H Hσ

1 (A) = im(B0). Hence the
spectral sequence stabilizes at the second page with all further maps being zero. �

Proposition 5.3. For σ = σλ, λ = q−(2b+2), then HCσ
2n+1(A) = 0, and:

1. λ = q−2. HCσ
2n+2(A) = k[1] ⊕ k[ω2].

2. λ = q−4. For c = d, HCσ
2n+2(A) = k[ω2], else HCσ

2n+2(A) = k[1] ⊕ k[ω2].
3. λ = q−(4b+6). For cd = 0 or c = d, HCσ

2n+2(A) = k[1] ⊕ k[ω2], otherwise HCσ
2n+2(A) = k[ω2].

4. λ = q−(4b+8). For cd = 0, HCσ
2n+2(A) = k[1] ⊕ k[ω2], otherwise HCσ

2n+2(A) = k[ω2].
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Proof. We prove case 3, the others are completely analogous. For cd = 0 or c = d, H Hσ
0 (A) = k[1] ⊕ k[A2b+3

],
and H Hσ

1 (A) = k[(Ab+2), A]. We have B0[1] = [(1, 1)] = 0, B0[A2b+3
] = [(1, A2b+3)] = (2b+ 3)[(Ab+2, A)]. So

ker(B0) = k[1], im(B0) = H Hσ
1 (A). Then the spectral sequence (37) stabilizes at page two:y y y y

0 ←−−−− k[ω2] ←−−−− 0 ←−−−− k[1]y y y
k[ω2] ←−−−− 0 ←−−−− k[1]y y

0 ←−−−− k[1]y
H Hσ

0 (A)

with all further maps being zero. For cd 6= 0 and c 6= d, then H Hσ
0 (A) = k[1] ⊕ k[A2b+3

] = k[A] ⊕ k[A2b+3
], and

H Hσ
1 (A) = k[(1, A)] ⊕ k[(Ab+2), A]. Then B0[A] = [(1, A)], hence ker(B0) = 0, im(B0) = H Hσ

1 (A). �

6. The standard Podleś quantum sphere

We specialize our results to the standard quantum sphere A(S2
q ), which as described in Section 3 naturally embeds

as a *-subalgebra ofA(SUq(2)). We recall that Schmüdgen and Wagner [17] defined a twisted cyclic 2-cocycle τ over
A(S2

q ) as follows. For a0, a1, a2 ∈ A(S2
q ), define

τ(a0, a1, a2) = h(a0[(a1 C F)(a2 C E)− q2(a1 C E)(a2 C F)]) (38)

where C is the right action of Uq(su(2)) (8). As shown in [17], the mappings A(S2
q ) → A(SUq(2)) given by

x 7→ x C E , x 7→ x C F are derivations. Here h denotes the Haar state on A(SUq(2)), which restricts to A(S2
q ) as

h(Ar Bs) = 0 = h(Ar (B∗)s) s > 0, h(Ar ) = (1− q2)(1− q2r+2)−1.

Schmüdgen and Wagner proved:

Proposition 6.1 ([17], Theorem 4.5). τ is a nontrivial σ -twisted cyclic 2-cocycle onA(S2
q ), with σ the automorphism

given by σ(x) = K−2 B x. Further, τ is Uq(su(2))-invariant and coincides with the volume form of the distinguished
covariant 2-dimensional first order differential calculus found by Podleś [14].

Schmüdgen and Wagner also constructed a Uq(su(2))-equivariant Dirac operator, unitarily equivalent to those
previously found by Bibikov and Kulish [1] and Dabrowski and Sitarz [3], which they used to give a representation of
the Podleś calculus by bounded commutators.

Explicitly, σ(B) = q2 B, σ(B∗) = q−2 B∗. So in (14), λ = q2. From Proposition 4.2 and Theorem 4.6 we have
H Hσ

n (A) = 0 for n ≥ 1 for this σ , i.e. this twisted cocycle does not correspond to the “no dimension drop” case. By
Proposition 5.1, we have HCσ

2n(A) = C[1] ⊕ C[A], HCσ
2n+1(A) = 0 for all n ≥ 0. The σ -twisted cyclic 0-cocycles

τ0, h A dual to [1], [A] are defined on Poincaré–Birkhoff–Witt monomials x (6) by τ0(1) = 1, τ0(x) = 0 for x 6= 1,
and

h A(Ar Bs) = 0 = h A(Ar (B∗)s) s > 0

h A(1) = 0, h A(Ar+1) = (1− q4)(1− q2r+4)−1.

The Haar state h (restricted to A(S2
q )) is given by h = τ0 + (1 + q2)−1h A. By cohomology calculations completely

dual to our previous homology calculations, we have HC2n
σ (A) ∼= C[Snτ0] ⊕C[Snh A], HC2n+1

σ (A) = 0, where S is
Connes’ periodicity operator. We can now identify the class of τ in HC2

σ (A):
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Theorem 6.2. We have [τ ] = β[Sh A] ∈ HC2
σ (A), for some nonzero β.

Proof. We have HC2
σ (A) ∼= C2, generated by [Sτ0], [Sh A], where Sφ(a0, a1, a2) = φ(a0a1a2) for any φ ∈ HC0

σ (A).
Recall from [17] the element

η = (B∗, A, B)+ q2(B, B∗, A)+ q2(A, B, B∗)− q−2(B∗, B, A)

− q−2(A, B∗, B)− (B, A, B∗)+ (q6
− q−2)(A, A, A).

Now, τ(η) = −1, and it was shown in [17] that [τ ] is nontrivial in HC2
σ (A). So there are scalars α, β, not both zero,

such that [τ ] = α[Sτ0] + β[Sh A]. Now, τ(1, 1, 1) = 0 = Sh A(1, 1, 1), whereas Sτ0(1, 1, 1) = τ0(1) = 1. Hence
α = 0. Since Sη = (q4

− q−2)A2, we have Sh A(η) = h A(Sη) = (q4
− q−2)h A(A2) = q2

− q−2. If η was a twisted
2-cycle we could deduce that β = (q−2

−q2)−1. Since bσ (η) = 2(q4
−q−2)(A, A) 6= 0, this need not hold. We could

calculate β by finding [a] ∈ HCσ
2 (A) such that [Sa] = [A] ∈ HCσ

0 (A) (note that (1− q2s+4)[As+1
] = (1− q4)[A]

for s ≥ 0). Then τ(a) = βSh A(a) = βh A(Sa) = βh A(A) = β. However finding such an a explicitly has not been
possible. �
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